ALICE/97-24
Internal Note/PAT
June 27, 1997

Kalman filtering application

for track recognition and reconstruction
in ALICE tracking system

B.Batyunya, Yu.Belikov
JINR, Dubna, Russia
K.Safaiik
CERN, Geneve, Switzerland

Abstract

A tracking program based on Kalman filtering algorithm was developed for si-
multaneous track recognition and reconstruction in ALICE TPC and ITS. Recognition
efficiency of this program as well as reconstruction precision were estimated on samples
of Monte-Carlo simulated event.

1 Introduction

Kalman filtering is a very powerful method for statistical estimations and predictions. The
conditions of the Kalman filtering applicability are as follows. Let’s assume a certain ”sys-
tem” is determined at any time moment ¢; by a state vector xy. This system varies its state
from time t;_; to time t; according to an evolution equation

= fe(Tp—1) + €.

It is supposed that fj is a known determenistic function and ¢, is a random vector of intrinsic
”process noise” which has a zero mean value (< ¢, >= 0) and a known covariance matrix
(cover, = Q). Generally, only a function of the state vector can be observed, and the result
of the observation my is corrupted by a ”measurement noise”:

my = hk(.Tk) + 519

It is also assumed that the measurement is unbiased (< 0, >= 0) and has a definite covari-
ance matrix (covdy = Vj).

The theory of the Kalman filtering is described in many books. We mention here only
some of resulting formulas for the case of so called an extended Kalman filtering. In this
case the measurement function h; is a certain matrix Hy.

Let’s suppose that some estimates of the state vector T,_; and of the its error matrix

5’;9,1: cov(:?:k,l —x_1) are known at a certain time slot t; ;. Then we can extrapolate
these estimates to the next time slot ¢; by means of formulas

~k—1

Ty, = fk(%k—l)

~k—1 ~ 0

Ch = Fip Cra FkT‘f‘Qk; Fp = B Ji (1)
Tk—1

This is called as ”prediction”. The value of predicted x?-increment can be also calculated:

~k—1 ~k—1
O P = DR Tt E= e HeT, Ry =Vt HyCp Hy (2)

The number of degrees of freedom equals to the dimension of the vector my.

If we have the result of the state vector measurement at the moment ¢, we can combine
this additional information with the prediction results to improve our state vector estimation
using "filtering” procedure:

%k = .Z'k_ —i—Kk(mk—Hk .’L‘k_)
~ ~k—1 ~k—1
Cr = Cp, —KiHpC, (3)

Here K, is a Kalman gain matrix

k1 k1
Ky,=C, HI(Vi+H,C, H{)™"

At last, the next formula gives us the value of filtered x2-increment:

Xi = ()" (Rp) ey re=mp—H, Ty, R=V,—H, Ch H}

It can be easily shown that the predicted chi-square equals to the filtered chi-square :
Ot =X (4)

Kalman-like solving of the tracking problem is not so new (see for example [1] and
references there) and its advantages as well as shortcomings are understood now. As we
know this method possess the only shortcoming. One needs realistic initial approximations
for the state vector and its errors matrix to start a stable filtering procedure, but sometimes
it is a real problem to get good seeds for filtering. On the other hand, advantages of this
method are quite attractive.

e [t is a method for simultaneous track recognition and reconstruction.

e When one applies this method for track fitting only, the wrong hits (as a consequence
of an unideality of the other recognition procedure) can be rejected during the only
fitting pass due to the property (4), while these background hits are found only after
the first fitting step, when a global fit method is used, and an additional fitting pass
is necessary.

e When multiple scattering is not negligible and, therefore, track measurements are
correlated, we have to manipulate with large matrices in the global fit. For example, if
we have 100 hits per track, the size of the global covariance matrix is 100x 100, whereas
there are about 100 matrices of 5x5 dimensions for the Kalman filtering. It is clear
that calculations are faster in the last case.

e The Kalman filtering is very useful to find a prolongation of a track from one detector
to another. Unlike the global fit the Kalman filtering gives a local track estimate at
the detector boundary. The local estimate is often better for the track prolongation as
compared with the estimate averaged over all detector sensitive volume.

In this note we describe some more manner to convert tracking problem to the Kalman
filtering. Of course, our approach doesn’t differ in principal from others, but we think it
is more simple, explicit and convenient for object oriented programming. We present also
some results of this approach application to the simulation data, which have been obtained
for the ALICE tracking [2] system containing the Time Projection Chamber (TPC) and the
silicon Inner Tracking System (ITS).

The tracking procedure is described in Section 2. Some problems of the TPC-ITS match-
ing and the tracking in the ITS are discussed in Section 3. The main results are presented
in Section 4 and some formulas for multiple scattering matrix evaluation and dFE/dX cal-
culation are given in Appendix (for all these calculation we assume that the particles are
pions).

Y| Y
R
v
r
¥
W X
V0
X
Figure 1:

2 Tracking procedure in ALICE TPC

Let us choice a track parametrization in the next form.
B . Cr+(1+CD)D/r
o(r) = o + arcsin 1579CD
_ tan A . r? — D?
2(r) = 2+ > = arcsin(Cy/ 1 +2 D)
where ¢, z and r are cylindrical coordinates of a given track point, A is a track dip angle,
C =1/(2R) is a half track curvature, 7, is a slope of the track projection in (XY')-plane at
the point of a minimal distance from the coordinate origin and D, 2, are track transverse and
longitudinal impact parameters respectively (see Fig. 1). Depending on particle charge and
track position relative to the coordinate origin, parameters C' and D can possess a different
sign.

To construct Kalman filter we have to define the ”state vector” for tracks, the propagation
function fi, matrices Fy, Qy, Hy, Vi and so on (k-index means the k-th detector layer). With
a given track parametrization we can define the track state vector as

ol = (¢p, 21, D, tan X, C).

Then, because the vector of measurements and its error matrix are clear

r o2, 0
mk:<ifk>7‘/k:<0r¢ O_Z)a

3

the measurement matrix is
g o " 0000
*~\o 1000)
The formulas for the filtering procedure are entirely the same as for the common case (3).

It is not so hard to show that prediction for our state vector must be written in the form

(~k—1

by, = ¢, +arcsin(Ay) — arcsin(Ag_;)
k-1
Zp = g1+ ban Ay [arcsin(Bk) — arcsin(Bk,l)]
~k—1 ~ Ck—1
T, = fk(xkfl) < ~k—1 ~
Dy, = Di
~ k-1 ~
tan\, = tanX;_;
~k—1 ~
\ Ck = Ok*l)
~ ~ o~ o~ , 2
where A, = Cip 1 + (14 CNkDNk) Dy /1 and B, =Cy LND’“N We can use the equa-

1 +2 CkDx 142 CyDyx
tion (1) for the error matrix prediction with the Fj-matrix calculated from the system above

P o(’,Z_l, z,’j_l, D,’j_l,tan A’,z_l,C',]j_l)
k pr—
O Pr—1, 2k—1, Di—1, tan g1, Cy—1)

~

Tp—1=Tg—1

At last, we have to evaluate matrix the (Q;, which describes multiple scattering distortion
(appendix A.), and take into account energy losses (appendix B.).

The tracking program consists of two parts:

1. track starting part;

2. track following part.

In the track starting part we have to obtain seeds for a track and track error matrix. The
well known way of track starting is an association of the closest hits to ”chains” and fitting
them globally to get the fit results as seeds for the Kalman filtering. This method requires
an external fitting routine. It is not so convenient, because the track starting part and the
track following part are quite different.

There is another way to start tracks. We start from the outermost TPC layer (labelled
as n0.0), get a hit with coordinates (ro, ¢, 29) and errors o4, 0,0 and construct a rough track
and rough error matrix

bo M O 0 0 0

20 N 0 M?>0 0 0
To=| 0 ,Co=10 0 M3 0 0 ,

ZO/TO 0 0 0 Mt2g/\ 0

0 0O 0 0 0 M2

where My ., piga,c are "reasonable” large numbers. We have chosen
M¢:0'¢, MzZO'z, MD:Dmin/V 12, Mtg/\zl/\/ 12, MCZQ/(TO\/ 12)
with D, = 10 mm. These rough objects must be propagated to the next layer (layer no.1)
~0

~ ~0 ~
o= fi(zy), C1=F Co F}

~0
Then, after propagation to the next layer, a window around current track position (¢, z;)

is calculated:

0
zy £3\[(C1)z + 0.

All hits inside the window must be considered as possible track prolongations, since
~0

the precision of the error matrix estimate ('; is not enough at this step and x? can not
be evaluated correctly. Moreover, the filtering procedure (3) is unstable here for the same

reason. But the next trick saves us. We create a temporary track y (r1, ¢1, 21) and its errors

matrix F= cov(y —y) for each hit (r, ¢y, z1) inside our window

2
o5
¢1 0.3)1 0 0 0 , —T
2 0 o2 0 ~Z 0
~ 0 ~ z
= =10 0 10Mp)? 0 0
Y (20 ? 21) » B 52 (») - ’
. 0 2zl 0 2 z1\2 0
sin(¢og — ¢1) 2 J ([)
l —po o 0 2P

where [= \/7“3 +r? — 2roricos(¢y — ¢1). Then we can improve the current track and the
error matrix estimates as follows

~improved ~0 ~ -1

Cy = [(01) t (E) 1} ’

~improved ~improved r ~0 0 ~ L~

Ly = C [(01) ta H(E) y}. (5)

These improved estimates can be extrapolated to the layer number 2 by the

~1 ~improved

~improved T
Ty= fa(7

~1
)7 Co= F (O F2

and improved again with the hits, which are inside of recalculated window. As a result we
~improved ~improved

obtain a new estimates w, and Cy and repeat the procedure if necessary. We
~l d ~improved
have found that for the ALICE TPC conditions the precision of the x;mpmve and C

is enough to pass them to track following part of the program.

When these initial approximations for the track and error matrix are obtained, the track
following part begins. In this part we have to execute the next steps:

e track and track error matrix propagation to the next layer according to equations (1);

~hk—1
e calculation of the predicted (x?)F* value (2) for all hits inside the window ¢, +Agy,

~k—1
where A¢p = 3\/(C’k Voo + Ugski

e filtering (3) with the "best” hit, which gives the minimal (x2)f* and this value is less
than a certain value x2 . .

These steps must be repeated until the detector boundary will be archived or ”best” hits
will not be found at the three consecutive layers (i.e. there is a track kink or the current
track is secondary).

If we succeed in track following up to the innermost TPC layer, we save this track and
its error matrix. Further, all these tracks are sorted according to the curvature increasing
and pass to the ITS tracking program (after the processing of all hits at the outermost TPC
layer).

3 TPC-ITS matching and tracking in ALICE ITS

The dead zone between the TPC and the I'TS is rather extensive and the track density inside
the ITS is so hard, that the naive continuation of the tracking procedure described above
is quite ineffective. The reason is a lot of hits which are revealed inside the r¢-window at
the outermost ITS layer. Some of these hits give y?-increments near the minimal one. In
these circumstances the "best” hit (in a sense of x?) can be out of the current track with
appreciable probability. We note, that the hit density decreases partially because we start
matching from the most straight tracks and remove hits belonging to the reconstructed ones,
but it doesn’t eliminate a problem completely.

One way to overcome this obstacle is to follow all possible track prolongations inside the
ITS. That means that for a given track from TPC, we check each path defined by our r¢ — x?
windows, calculate total x? for each path and get the path with the minimal value of the
total x? as a best track prolongation. This way guarantees that the most of the tracks will
be followed from the innermost TPC layer to the innermost I'TS layer. Unfortunately, a large
part of these tracks will contain wrong hits and this will be a reason of a low reconstruction
precision.

To reduce the wrong hit contamination, we have to take into account an information
about vertex, which can be obtained ”a priori” before the full track reconstruction (see
Section 11.3.2 of the [2]). Vertex constraints can be putted in the operation by following

redefining of the measurement vector and its errors matrix:

qubk (Tk0'¢k)2 0 0 92
2k 0 0% 0 Tk
my = 0 ,and Vi = 0 2 dc
o) 0Dk
Zkiko O,k T2k \2 2
arcsin Cyry 0 7 0 (ﬁ) + Ofan Mk

The measurement matrix Hy must be redefined correspondingly as:

e 00 0 0
01000
H = 0 0100
00010

The sense of these definitions is quite clear. The third component of the m; means that our
track have transverse impact parameter D = (. The fourth component (dip angle tangent)
is calculated by assuming that track goes through points at z = z; and z = 0.

Values of the op; and o, A need to be evaluated apart. These values are determined
by multiple scattering between the current layer number k£ and the vertex and, therefore,
depend on a track curvature and (in much less extent) a track dip angle. Note, that hits
in the ITS don’t influence visibly on a precision of the curvature reconstruction and we can
use the curvature reconstructed in the TPC for op, and oy, 2z calculation at the each ITS
layer. To do this calculation we create a temporary track as:

0 O 0 0 0
0 , 2

) 0) 0 0% 0 G 0

t= 0 cov(t —t) = | 0 02 Thy , 0 0 ,
0

“0aresin Cory 0 UTZO” 0 Zu :; o

0
0 0 0 0 0 o2

where 2y, Cy are current track z-coordinate and curvature after an extrapolation from the
~TPC

TPC to the outermost ITS layer with radius ro; 02, = (C,).. is a dispersion of the track
z-coordinate at r = ry and o,, and op, are uncertainties of the vertex position which is
obtained a priori (we put the o,, ~ 1.0 mm and op, ~ 0.1 mm). The op; and oy A (in the
expression for the V) can be consequently obtained during propagation of this temporary
track from the vertex to the outermost ITS layer (see formula (1)) and are equal to

U%)Ic = [COU(t _t)]lz—l—l]DD’ O.‘?an/\k = [COU(t _t)]lz—l—l]ta.n/\ta.n)\'

So, we have found that the best TPC-ITS matching and tracking inside the ITS can be
carried out if we

e make the filtering procedure with the four-component vectors m; taking into account
the vertex position,

e check all possible track prolongations defined by the r¢-windows and x? increments
which have four degrees of freedom in this case,

e get as the real track prolongation the path with the minimal value of the total yx? per
path.

4 Results and discussion

The tracking simulation has been done for the ALICE tracking system using the standart
SHAKER event generator [3] and the GEANT 3.21 package. The event was generated
with a charged particle (7%, K* and protons/antiprotons) density of dN/dy = 8000 in
the polar angle region of 40° < 6 < 140° and at the particle momenta p > 30MeV/c. The
photons from 7° decays were generated also. All secondary processes (inside the matter) were
included and magnetic field equaled to 0.27" was taken into account. We used for the silicon
ITS performance the detail simulation model [4] including the clustering algorithm and the
coordinate reconstruction as a center of gravity of a charge distribution in a cluster. The
I'TS consists of six silicon cylindrical layers with the values of radii and the mean coordinate
resolution presented in the Table 1.

Mean coordinate
Layer | R (cm) | resolution (um)
reo z
1 3.9 15. 90.
2 7.6 15. 90.
3 14. 20. 30.
4 24. 20. 30.
5 40. 30. 860.
6 45. 30. 860.

Table 1: Parameters of the I'TS layers

For the tracking simulation in the TPC we used a simple TPC geometry including a
barrel (filled in a gas) divided to 75 very thin layers. The innermost barrel radius is 78
cm and a thickness of the barrel is 150 cm. The explicit GEANT coordinates of the track
crossing points with the layers were smeared according to Gaussian resolution of 0.6 mm on
r¢ direction and 1.5 mm on z direction. The full amounts of a material was put equal to
4.4% Xy and 3.4% X, for the ITS and the TPC respectively. Besides, the beam pipe with
0.2% X, has been included.

After recognition we separated tracks into several sets:

e found tracks, which consist of

10 | 50" 0000000

efficiency %

80 |-
O TPC efficiency

3 ¥ TPC+ITSefficiency
60 B faketrack efficiency

40

20
i

I

o b1 . = o i WD DO CUSSUIN _*_
200 400 600 800 1000 1200 1400

pr MeVic

Figure 2: Tracking efficiencies

— good tracks, when each track contains only right (own) measurement points in
the I'TS and not more than two wrong hits in the TPC,

— and fake tracks otherwise;

e initial tracks, which are generated ones with points on the TPC boundaries and all
hits inside the ITS(these tracks amount to 65% from all generated ones).

We calculated tracking efficiency as the ratio

_ Nfound o Ngood + Nfake

Ninitial Ninitial

€

where Nfound, Ngood; Nfake and Nipiriar are numbers of found, good, fake and initial tracks
respectively. Figure 2 shows efficiencies for the TPC only, for both the TPC and ITS
processing and fake track efficiency, which is €4k = Nfake/Ninitial-

One can see that the efficiency is quite high (near 100%) if only the TPC is used. Of
course, such a high efficiency is the consequence of not so realistic TPC simulation, without
the hit clustering witch one leads to overlapping of tracks and to a loss of some hits. It is seen
from Fig. 2 that the efficiency decreases significantly (especially at the low py values) when
the ITS is used. First of all, the reason is the TPC-ITS matching and multiple scattering
influence. Sometimes, the hit number reaches of 10 <+ 20 inside the r¢ — x? windows at the
outermost I'TS layer. This effect manifests itself mostly in low pr region, where the window

sizes increase because the multiple scattering. The other reason of efficiency losses is a loss
of hits inside the ITS related to the track overlapping. All these effects are under study now.

I Constant 350.2 700 F Constant 419.3
500 f F

I Mean -0.1743E-04 | 600 [Mean -0.3246E-03
400 ;,Sigma 0.1227E-02 500 7 Sigma 0.4448E-01
300 [400 £

: 300 |
200 | g !

E 200 | g

N F W coleteses &
100 © 100 F AN

ob o L AEEANTN
-0.005 0 0.005 -0.2 0 0.2
¢ (rad) Z,, D (mm)

600 [Constant 3724 450 I Constant 2478
500 [Mean 0170005 | 490 Fmean -0.7536E-03

" Sigma 0.1629E-02 | 350 Fsigma 0.1804E-01
400 | 300 F

g 250
300 s 200
200 150 |

3 100 £
100 + E

E 50 |

P E

.01 0005 0 0005 001
A (rad)

Figure 3: Track reconstruction precisions

Figure 3 shows distributions of the differenses of generated and reconstructed track pa-
rameters. It is seen that the angular resolutions (sigma) are 1.5 =+ 2.0 mrad, the momentum
resolution (the same as for the Ar/r) is smaller than 2% and the impact parameter D and
Z resolutions are ~ 40pm and ~ 90um respectively (resolutions for impact parameters were
obtained by assuming that the vertex position is known with precision ~ 50um for Z; and
~ 100pm for D). Track parameter resolutions are very near to the ones declared in the sec-
tion 11.3.3 of [2], which were got from more simple tracking simulation. It should be noted
that our selection of the good tracks is strong enough that one improves the resolutions but
make worse the efficiency. This contradiction may be important for more real situation on
account of the realistic TPC and ITS performance.

At last we give the CPU time spending amounts per a hole ALICE event processed on
ION1 machine. It is about 30 min for the TPC tracking program and about 30 min for the
TPC - ITS matching and ITS tracking program. Note, that this time amounts are for the
both track recognition and reconstruction.

10

References

[1] P.Billior and S.Qian, Nucl. Instr. and Meth. A294 (1990) 219
(2] N.Ahmad et al., ”ALICE Technical Proposal”, CERN/LHCC/95-72, Geneve, 1995
3] F.Antinori, Internal Note /SIM ALICE/93-09, 1993

[4] B.Batyunya, A.Zinchenko, Internal Note /SIM ALICE/94-21,1994; JINR Rapid Com-
munications No.3[71]-95, Dubna, 1995

Appendix A. Calculation of multiple scattering matrix

A.1. Case of discrete scatterer

For not so thick scatterer we can assume that multiple scattering affects only to track
directions leaving a track position undistorted. Using this approximation we write a general
formula

@k, 2k, D, tan A, Cy) [< O3 > 0 0@k, 2k, Dy, tan Ay,)17
Qk = 2 [])
0(61,065) 0 <03 > 0(61,06,)

where 6, f; are uncorrelated scattering angles in two perpendicular planes which are crossed

along the momentum direction, < ©? > and < ©% > are mean squared scattering angles.

2
Then, on account of the equalities < 02 >=< 02 >=< ©? >= [%ﬂl} %0, the formula for

Qr becomes

O = <> O, 2k, Dy, tan A, Ck) O(g, Vi) [3()\k,%)]T[3(¢k,Zk,Dk,taﬂ)\kack)]T _
: Ok,) (61, 65) L(61,0.) Ok, 7r)
1 0 14.112 X,
= <O°>J (1) JL === =8, (A1)
0 cos? \j [Pﬂ] Xo

where X} is the scatterer thickness, v, = arctan % is the angle between the track XY-
T
projection and X-axis and matrix Jj, is

0 0 0 0
0 0 0 0
Jk _ 8(¢k,zk,Dk,tan)\k,Ck) _ glc): gg: %{?: _ g_g&ck tan)\k %_D&
O(Aks V) 1 0 k gk ’
cos® A cos? \
g—g’k‘ 0 Ok tan)‘k
k

0C, _ 0C, 0Pr _ const p .. _ o~ Pr
because O\, = 0Py O, — P% Psin A\, = CkPT = () tan A;.

11

Partial derivatives ggk and %—%ﬂ are calculated from the expression for Dy
Do +\/R2 + 12+ 2Rrgsin(¢p — k) — R, for R = Tk >0
—\/R? + 1} + 2Rrysin(¢ — 1) — R, for R = %k <0

8Dk . ’I“z — D,%
OCy 1+ 2CyDy,
aDk :t\/’l“]%— (CkD,%—FDk —Ck’l“]%)2

OV 1+ 2C, Dy,

A.2. Case of continuous scatterer

For the case of infinitely thin scatterer we define infinitely small matrix d() as (see (A.1))

(dQY,; = [14 1]2dX

{ }7/]
Therefore, multiple scattering covariance matrix for the case of continuous matter between
radii r,_; and ry, is

@ = 3] [81 e = o] [tson T

Appendix B. Energy losses treatment

For a taking into account energy losses we use a simplified Bethe - Bloch formula reduced

to the case of pions:

0.153 [, 594043
AEF = ——(In 62
g 1-p
With this formula we can modify a current track curvature every time, when track crosses a
next detector layer:

— 52> AX. (B.1)

AC, E
Cnew - Cold (1 - ld) - Cold (1 - _QAE>)
Cold p

where C)., and C,4 are track curvatures before and after a layer crossing, £ and p are
particle energy and momentum (which are clear functions of C,y and track dip angle), and
AFE is calculated from the equation (B.1).

12

